Public Health Impacts of Projected 2050 Ozone Concentrations in Mecklenburg County, NC

Presented by: Steven Lippmann1,2
\texttt{slippmann@unc.edu}

Co-authors: Karin Yeatts1, Adel Hanna3, Lauren Thie4, and Anna Waller2

1Department of Epidemiology, University of North Carolina, Chapel Hill, NC
2Carolina Center for Health Informatics, Department of Emergency Medicine, University of North Carolina, Chapel Hill, NC
3Institute for the Environment, University of North Carolina, Chapel Hill, NC
4Division of Public Health, Department of Health and Human Services, State of North Carolina
Outline

• Primer on ozone
• Walk through the health impact formula
• Describe our data inputs and results
Ozone Creation

- Volatile Organic Compounds (VOCs)
- Nitrogen Oxides (NOx)
- Ozone (O₃)

Emissions
Ozone Reduction

- Volatile Organic Compounds (VOCs)
- Nitrogen Oxides (NOx)
- Ozone (O₃)

Emissions
Ozone Reduction

Volatile Organic Compounds (VOCs) + Nitrogen Oxides (NOx) + Ozone (O₃)
Your Best Guess?

How will ozone concentrations change in Mecklenburg County NC from today to 2050?

-20% - 10% No Change +10% +20%
Project Overview

Combine data on:

• Emergency department visits (current)
• Concentration-response associations from the epidemiological literature
• Ozone levels (current and projected)
• Population (current and projected)

to estimate the future burden of emergency department visits in Mecklenburg County, NC in 2050.

PLEASE NOTE:
These are preliminary results and should not be distributed or cited.
Health Impact Formula

\[\Delta H = H_0 \left(1 - e^{-\beta \Delta Ozone}\right) \times \text{Population} \]

A. Baseline incidence – e.g. Asthma ED visits from 2006-2011
B. Concentration-response functions from epidemiological literature
C. Change in ozone concentrations
D. Population at risk
Health Data

NC DETECT

• State-wide surveillance data
• Primary data elements used:
 – ICD-9-CM diagnosis codes (up to 11)
 – Age / sex
 – Patient county of residence
 – Visit date/time
• Obtained via a data use agreement with state DPH data owners

9 hospitals within Mecklenburg County
Asthma ED Visit Incidence Rates

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Gender</th>
<th>Asthma ED Visit Count (April-October, 2006-2011*)</th>
<th>Population (%) (Mean, 2006-2011)</th>
<th>Incidence Rate (per person-day*)</th>
<th>Average Count per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-19</td>
<td>Female</td>
<td>2246</td>
<td>123321 (13.8)</td>
<td>1.51E-05</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>3872</td>
<td>127737 (14.3)</td>
<td>2.51E-05</td>
<td>3.2</td>
</tr>
<tr>
<td>20-44</td>
<td>Female</td>
<td>3157</td>
<td>182447 (20.4)</td>
<td>1.43E-05</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>2117</td>
<td>174691 (19.6)</td>
<td>1.00E-05</td>
<td>1.7</td>
</tr>
<tr>
<td>45-64</td>
<td>Female</td>
<td>1605</td>
<td>108978 (12.2)</td>
<td>1.22E-05</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>975</td>
<td>98713 (11.1)</td>
<td>0.82E-05</td>
<td>0.8</td>
</tr>
<tr>
<td>65+</td>
<td>Female</td>
<td>494</td>
<td>46046 (5.2)</td>
<td>0.89E-05</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>205</td>
<td>31242 (3.5)</td>
<td>0.54E-05</td>
<td>0.2</td>
</tr>
<tr>
<td>Total</td>
<td>Mid-</td>
<td>14671</td>
<td>893176</td>
<td>1.36E-5</td>
<td>12.1</td>
</tr>
</tbody>
</table>

Data Source: NC DETECT, Apr-Oct 2006-2011

*74 days were determined to have data quality problems and were dropped from both the numerator and denominator.
Concentration-Response Functions

<table>
<thead>
<tr>
<th>Study</th>
<th>Incidence Rate Ratio</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peel et al., 2005 Atlanta, GA</td>
<td>1.022 (0.996, 1.049) per 25 ppb increment</td>
<td>0.000870 (0.000529)</td>
</tr>
</tbody>
</table>

2.2% increase in asthma ED visits per 25 ppb increase in ozone
Change in ozone

Current Ozone Concentrations 2006-2011

MONITOR DATA
Mean Daily Maximum
8 Hour Average (ppb):

Data Source: U.S. EPA Air Quality System
Mean of 3 monitors within county,
April-October

Future Ozone Projections 2050

MODEL DATA
Mean Daily Maximum
8 Hour Average (ppb):

Data Source: GCM: NCAR, Resolution: 12km, IPCC Scenario A1B, with Projected Anthropogenic Emissions Inventory, May-August
Current Ozone

North Carolina Counties with 8-Hour Ozone Violations, 2010-2012

Daily Max 8-hour Ozone Concentrations from 01/01/00 to 12/31/14

Parameter: Ozone (Applicable standard is 0.075 ppm)
CEAS: Charlotte-Gastonia-Concord, NC-SC
County: Mecklenburg
State: North Carolina
AQS Site ID: 37-119-0041, pcc 1

Source: http://daq.state.nc.us/monitor/data/o3design/o3nc10-12.pdf

Source: U.S. EPA AirData - http://www.epa.gov/airdata
Generated: April 23, 2014

Source: http://charmec.org/mecklenburg/county/LUESA/SOER/Pages/AirQualityOzone.aspx
Ozone Concentrations

Current Ozone Concentrations 2006-2011
Mean Daily Maximum 8 Hour Average (ppb): 51
Data Source: U.S. EPA Air Quality System
Mean of 3 monitors within county, April-October

Future Ozone Projections 2050
Mean Daily Maximum 8 Hour Average (ppb):
Data Source: GCM: NCAR, Resolution: 12km, IPCC Scenario A1B, with Projected Anthropogenic Emissions Inventory, May-August
Air Quality Model

- Model years: 2048-2050
- IPCC A1B Scenario
- Projected anthropogenic emissions inventory
- GCM: NCAR
- Future climate meteorology: CCSM 2050
- Downscaling: Analysis nudging technique
- 12km resolution

For more technical information, contact Adel Hanna at the UNC Institute for the Environment.
Future Air Quality Model Specifications

<table>
<thead>
<tr>
<th></th>
<th>Set to baseline levels?</th>
<th>Set to projected future levels?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meteorology/ Climate</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Biogenic Emissions</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Anthropogenic Emissions</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Greenhouse Gas Scenario (IPCC SRES)</td>
<td></td>
<td>X (A1B)</td>
</tr>
</tbody>
</table>
Ozone Concentrations

Current Ozone Concentrations 2006-2011

Mean Daily Maximum 8 Hour Average (ppb): 51

Data Source: U.S. EPA Air Quality System
Mean of 3 monitors within county, April-October

Future Ozone Projections 2050

Mean Daily Maximum 8 Hour Average (ppb): 45

Data Source: GCM: NCAR, Resolution: 12km, IPCC Scenario A1B, with Projected Anthropogenic Emissions Inventory, May-August

Delta: ~6ppb
~11% decrease
Population Data

2010: 919,628
US Census 2010

2050: 1,908,598
US EPA ICLUS 1.3.2, A1 Scenario

Population

<table>
<thead>
<tr>
<th>Age Groups</th>
<th>2010</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-19</td>
<td>257,743</td>
<td>400,512</td>
</tr>
<tr>
<td>20-44</td>
<td>363,987</td>
<td>551,821</td>
</tr>
<tr>
<td>45-64</td>
<td>216,785</td>
<td>456,907</td>
</tr>
<tr>
<td>65+</td>
<td>81,113</td>
<td>499,358</td>
</tr>
</tbody>
</table>

PRELIMINARY DATA- DO NOT DISTRIBUTE OR CITE
Population Scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Population Size</th>
<th>Demographic Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Constant Population (Held at 2010 Levels)</td>
<td>919,628</td>
<td></td>
</tr>
<tr>
<td>Data Source: U.S. Census 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B) 2050 Population Size, with 2010 Age-Sex Distribution</td>
<td>1,908,598</td>
<td></td>
</tr>
<tr>
<td>Data Source: U.S. EPA ICLUS v1.3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C) 2050 Population IPCC A1 Scenario</td>
<td>1,908,598</td>
<td></td>
</tr>
<tr>
<td>Data Source: U.S. EPA ICLUS v1.3.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Health Impact

Asthma ED Visits Avoided, per warm season

<table>
<thead>
<tr>
<th>Age Group</th>
<th>(A) Constant Population (Held at 2010 Population Levels)</th>
<th>(B) 2050 Population Size, with 2010 Age-Sex Distribution</th>
<th>(C) 2050 Population IPCC A1 Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-19</td>
<td>9.9</td>
<td>20.6</td>
<td>15.4</td>
</tr>
<tr>
<td>20-44</td>
<td>8.6</td>
<td>18</td>
<td>13.2</td>
</tr>
<tr>
<td>45-64</td>
<td>4.3</td>
<td>9</td>
<td>9.1</td>
</tr>
<tr>
<td>65+</td>
<td>1.2</td>
<td>2.4</td>
<td>7.1</td>
</tr>
<tr>
<td>Total</td>
<td>24.0</td>
<td>49.9</td>
<td>44.7</td>
</tr>
</tbody>
</table>
Health Impact

Asthma ED Visits Avoided, per warm season

| Age Group | (A) Constant Population (Held at 2010 Population Levels) | (B) 2050 Population, Simulating (C) 2050 Population Scenario:
IPCC A1 Scenario |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0-19</td>
<td>9.9</td>
<td>15.4</td>
</tr>
<tr>
<td>20-44</td>
<td>18</td>
<td>13.2</td>
</tr>
<tr>
<td>45-64</td>
<td>13</td>
<td>9.1</td>
</tr>
<tr>
<td>65+</td>
<td>7.1</td>
<td>2.4</td>
</tr>
<tr>
<td>Total</td>
<td>24.0</td>
<td>49.9</td>
</tr>
</tbody>
</table>

Seems small? Remember an average day sees about 12.1 asthma ED visits. This is roughly equivalent to removing 2 full days of visits from each warm season.
Summary

- Projected ↓ summertime ozone concentrations for Mecklenburg County, due to ↓ anthropogenic emissions.
- ↓ in asthma emergency department morbidity, moderately sensitive to future population demographics.

Continued reductions in anthropogenic emissions are needed to offset climate-change-related increases in ozone and population dynamics
Next Steps

• Scaling up to whole state of North Carolina
• Age group / Sex /Disease specific concentration-response functions
 • Asthma
 • COPD
 • Cardiovascular diseases
• 2nd air quality projection for 2050 that uses current emissions levels for comparison.
Acknowledgements

This project also builds off of the following grants:

- CISA Small Project Grant

- EPA –STAR Grant (Adel Hanna)
 R832751010

- CDC BRACE (Lauren Thie)
 1UE1EH001126-01

Note: Data were obtained from the NC DHHS/DPH NC DETECT system under a data use agreement. The NC DETECT Data Oversight Committee does not take responsibility for the scientific validity or accuracy of methodology, results, statistical analyses, or conclusions presented.
Steven Lippmann
Department of Epidemiology
and Carolinas Center for Health Informatics
University of North Carolina at Chapel Hill
slippmann@unc.edu