Indicators of the Occurrence of Vibrio in the Winyah Bay, SC Estuary

Dan Tufford, PhD, University of South Carolina
Reem Deeb, MEERM, University of South Carolina
Geoff Scott, PhD, National Oceanic and Atmospheric Administration
Jan Moore, PhD, National Oceanic and Atmospheric Administration
Kirstin Dow, PhD, University of South Carolina
Elizabeth Fly, PhD, South Carolina Sea Grant Consortium

South Carolina Water Resources Conference
October 16, 2014
Acknowledgements

National Oceanic and Atmospheric Administration (NOAA) --
Center for Coastal Environmental Health and Biomolecular
Research (CCEHBR), Charleston, SC

Special thanks to the field team and laboratory for excellent
support in planning and executing this project.
Concept

Field sampling for *Vibrio* - This project

PRISM2 model - Prior project

Forecast future *Vibrio* in the study area - This project
Research Objectives

• Quantifying the distribution of *Vibrio vulnificus* and *Vibrio parahaemolyticus* in the Waccamaw River/Winyah Bay estuary

• Correlate *Vibrio* occurrence with environmental parameters
 - Especially salinity / conductivity

• Potential trends of *Vibrio* for the years 2055-2068 under future sea level and streamflow
Methods

• Monthly sampling in the Waccamaw River/Winyah Bay
 – Surface/bottom water
 – Field parameters measured
 – April – October 2012
 – Special Sandy sample

• Filter and incubate
 – CHROMagar
 – Focus on *V. vulnificus* and *V. parahaemolyticus*

• Statistics
 – Correlations of Vibrio spp with temperature, conductivity, and turbidity
 – Regression models

• Couple with PRISM2
Methods

• PRISM2 overview
 – Developed by USGS and ADMi
 – Neural network model
 – Uses streamflow, sea level, and tide stage
 – Predict conductivity in the Waccamaw River and Intracoastal Waterway

• PRISM2
 – Trained using historic data
 – HSPF model predictions of future streamflow
 – Used 1, 2, 3 ft. sea level rise
 – Predict future conductivity

• This project
 – Predict impact on Vibrio distribution
Results

• *Vibrio* found at all sites
 – Highest concentrations within known optimal salinity range

• PRISM2 predicts conductivity increases
 – Sea level is stronger driver of salinity trends than river flow
 – 90th percentile conductivities 2X – 15X depending on location and SLR
 – Peaks more frequent and longer duration

• *V. vulnificus*
 – More common in upriver sites
 – High concentrations more frequent and longer duration
 – Depends on SLR
Implications

• Greater opportunity for exposure
 – Geographic range increase
 – Temporal expansion

• Exposure risk based on occurrence of optimal conductivity range
 – Increase as much as 36X
 – Wound infections only

• Other factors
 – Temperature not included in this study
 – Optimal range is 15-30° C → *V. vulnificus*
 – Estuarine water is warming
 – Expect more days per year in range
Summary and conclusions

1) *Vibrio* spp. occur throughout the Waccamaw River/Winyah Bay estuary
 1) Even fresh water reaches

2) Salinity predicted to rise in the future
 1) Higher salinities, greater frequency, and longer duration of conditions that favor *Vibrio* growth

3) Potentially significant public health implications

4) Future work:
 1) Look at virulence
 2) Integrate temperature into the model
Questions?

PRISM2 report

Deeb thesis